Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco‐deficient mutants of Arabidopsis
نویسندگان
چکیده
Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.
منابع مشابه
Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylaseyoxygenase (Chlamydomonas reinhardtiiychloroplastyinsertional mutagenesisyphotosynthesisyprotein engineering)
Ribulose-1,5-bisphosphate carboxylasey oxygenase (EC 4.1.1.39) is the key photosynthetic enzyme that catalyzes the first step of CO2 fixation. The chloroplastlocalized holoenzyme of plants and green algae contains eight nuclear-encoded small subunits and eight chloroplastencoded large subunits. Although much has been learned about the enzyme active site that resides within each large subunit, i...
متن کاملFunctional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.
There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclea...
متن کاملRbcS suppressor mutations improve the thermal stability and CO2yO2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylaseyoxygenase
In the green alga Chlamydomonas reinhardtii, a Leu290-to-Phe (L290F) substitution in the large subunit of ribulose-1,5-bisphosphate carboxylaseyoxygenase (Rubisco), which is coded by the chloroplast rbcL gene, was previously found to be suppressed by second-site Ala222-to-Thr and Val262-to-Leu substitutions. These substitutions complement the photosynthesis deficiency of the L290F mutant by res...
متن کاملNuclear-gene mutations suppress a defect in the expression of the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate Carboxylase/Oxygenase
The green alga Chlamydomonas reinhardtii mutant 76-5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76-5EN to explore the possibility of increasing Rubisco expr...
متن کاملPurification and species distribution of rubisco activase.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase, a soluble chloroplast protein which promotes light-dependent rubisco activation, was partially purified from spinach chloroplasts by ion-exchange and gel-filtration fast protein liquid chromatography. The protein could also be isolated using rate zonal centrifugation in sucrose gradients followed by conventional ion-exchange on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 214 شماره
صفحات -
تاریخ انتشار 2017